Hamiltonian learning for quantum error correction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum error correction fails for Hamiltonian models

It is argued that the existing schemes of fault-tolerant quantum computation designed for discrete-time models and based on quantum error correction fail for continuous-time Hamiltonian models even with Markovian noise. The fundamental challenge to quantum information processing is a devastating influence of decoherence processes due to the interaction of a quantum device with environment. It i...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Hamiltonian Formulation of Quantum Error Correction and Correlated Noise

We analyze the long time behavior of a quantum computer running a quantum error correction (QEC) code in the presence of a correlated environment. Starting from a Hamiltonian formulation of realistic noise models, and assuming that QEC is indeed possible, we find formal expressions for the probability of a given syndrome history and the associated residual decoherence encoded in the reduced den...

متن کامل

Quantum Error Correction Code in the Hamiltonian Formulation

The Hamiltonian model of quantum error correction code in the literature is often constructed with the help of its stabilizer formalism. But there have been many known examples of nonadditive codes which are beyond the standard quantum error correction theory using the stabilizer formalism. In this paper, we suggest the other type of Hamiltonian formalism for quantum error correction code witho...

متن کامل

Optimal Quantum Error Correction from Hamiltonian Models or Process Tomography

A method is presented to integrate a complete “black-box” error correction scheme, that takes quantum process tomography as input and iterates until it finds an optimal error correcting encoding and recovery, thus tying theory to experimental decoherence control. The use of tomography in conjunction with optimal error correction has the potential to provide an effective and practical tool for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Research

سال: 2019

ISSN: 2643-1564

DOI: 10.1103/physrevresearch.1.033092